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Abstract. A phase diagram of the three-state Potts model on a triangular lattice with 
two- and three-body interactions is obtained by computer simulations. The interactions 
allow antiferromagnetic as well as ferromagnetic phases. The ferromagnetic transition 
changes from continuous to first order on varying the coupling constants. The antifer- 
romagnetic transition and the transition along the ferro- and antiferromagnetic coexistence 
line are first order. The resulting phase diagram agrees with that obtained by the low 
temperature series by Enting and Wu. 

1. Introduction 

The Potts model (Potts 1952) of phase transitions has recently become of particular 
interest, largely due to the richness of its physical content and its relevance in real 
physical systems (Domany et a1 1977). While a large body of exact and rigorous 
results are now known (for a recent review see Wu (1982)), a number of problems, 
particularly those associated with models with antiferromagnetic and multi-site interac- 
tions, still remain unresolved. In this paper we address one such problem, the 
three-state model on a triangular lattice with two- and three-site interactions. 

The system describes a Potts model in which each site can be in one of three spin 
states, 1, 2 or 3. The spins interact with a Hamiltonian which takes the form 

Here and subsequently the Boltzmann constant kB is set to be unity. ui = 1,2 ,  3 
specifies the spin state at the ith site, the first summation is over all nearest neighbouring 
pairs i and j of a triangular lattice, and the second summation is over all elementary 
triangular faces surrounded by sites i, j and k.  The two- and three-site coupling 
constants K and L can be either positive or negative. With appropriate combinations 
of the couplings, the system can exhibit either a ferromagnetic or an antiferromagnetic 
transition. 

The model (1) was first investigated by Schick and Griffiths (1977) by means of 
the real-space renormalisation group. Their result indicated that both the ferro- and 
antiferromagnetic transitions are continuous, and that the two transition lines meet 
at a bicritical point in the parameter space. More recently Enting and Wu (1982) 
studied this model by analysing the low-temperature series. While their analysis 
yielded a phase boundary, whose location is in general agreement with that determined 
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from the renormalisation group, they also found different characters of the transitions. 
In particular, they found the transition of the antiferromagnetic model with pure 
two-site interactions and that along the (ferro- and antiferro-) coexistence line to be 
first order. Furthermore, their results suggest that the ferromagnetic transition changes 
from continuous to first order as the couplings are varied, thereby implying the 
existence of a tricritical point which is not revealed in the renormalisation group 
analysis. It is therefore pertinent to study this model using a different approach to 
clarify these points. 

I have carried out a Monte Carlo simulation of the model (1). My main finding 
is a confirmation of the results implied by the low-temperature series analyses; I also 
obtained further data to pinpoint the location of the tricritical point. 

2. Order Parameters 

In figure 1 are shown the three distinct spin configurations which can occur around 
an elementary triangular face. They correspond to paramagnetic (P), ferromagnetic 
(F) and antiferromagnetic (AF) orderings. The energy per triangle for these configur- 
ations is - TK/2, - TM/2, and 0 respectively, where M = 3K + 2L. Therefore the 
ground state is P (without ordering) for K >{M, 0}, F for M>{K,  0)  and AF for 
0 > {M, K}. Our first task is to define an appropriate order parameter in the F and 
AF regions. 

Id1 

Figure 1. The three spin configurations of an elementary triangle typical of ( a )  the 
paramagnetic (P), ( b )  ferromagnetic (F) and (c) the antiferromagnetic (AF) states. ( d )  
represents the sublattice structure in the AF state. 

Let N,, a = 1,2,3,  denote the number of spins in the state ui = a, with 22=1 Na = N 
being the total number of sites. Then the appropriate order paramzter to take in the 
N + CO limit of a ferromagnetic system is (Straley and Fisher 1973) 4F = z ( (NI/N)  -$), 
where ( ) denotes the thermal average. However, since Monte Carlo simulations a';e 
done on finite lattices, and for all finite systems after a sufficiently lo?g simulation +F 

vanishes identically due to the symmetry of the Hamiltonian (l), is not a good 
order parameter to use in practice. Instead, we take the quantity 

as the ferromangetic order parameter. Clearly, O s  m F s  1, with mF= 1 denoting a 
complete ordering. We then define the susceptibility as 

XF = "2 T, T ' Tc, (3) 

as dictated by the fluctuation formula. Binder (1981) has defined the parallel and 
perpendicular susceptibilities, x1 and XZ, as 
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In the paramagnetic phase ( T  > Tc) where (N,) = iN,  the system becomes isotropic 
and our susceptibility xF is essentially equivalent to x 1  and x 2 :  

It is exEected that m F - O ( l / d N )  and X F - 0 ( 1 )  in the paramagnetic phase. 
When the system orders antiferromagnetically, the three sublattices A, B, C of 

the triangular lattice (cf figure l ( d ) )  are each occupied by a different spin state. Let 
N i ,  x = A, B, C, denote the number of spins of state a in the sublattice x ;  then we 
define analogous to (2) the following (antiferromagnetic) order parameter: 

When the system is in the AF state where most of the A sublattice sites are occupied 
by the spin species a = 1 ,  B by p = 2, and C by y = 3 ,  mAF is approximately 

which is of O(1) .  InLhe P phase mAF represents the antiferromagnetic fluctuation and 
becomes of O ( l / d N ) .  The assignment of the phases and phase transition in the 
Monte Carlo simulation is done with the help of the order parameters mF and mAF, 
as well as the internal energy per spin reduced by the temperature 

E = -(se>/lvr. (6 )  

3. Ferromagnetic transition 

Monte Carlo simulations are done for systems with various sizes N = 152 ,  302, 602, 
1202, with periodic boundary conditions. 4000 to 16 000 Monte Carlo steps per sites 
(MCS) are executed. Usually the first 200 MCS are discarded to allow for equilibrium. 
Due to the critical slowing down near the critical point, 1000 to 2000 MCS are necessary 
to reach equilibrium for some initial configurations. Especially near the tricritical point 
2000 to 4 0 0 0 ~ ~ s  are used to equilibrate the system. In order to find the phase 
boundaries the coupling constants K and M are scanned along line ll (L = 0, K > 0), 

Is (M = -0.1 K > 0) ,  1, ( M  = 0, K < 0), I s  (M = K < 0), l9 (L = 0, K < 0), which are 
shown in the KM phase space in figure 2. 

The line ll corresponds to the system with the ferromagnetic two-body interaction 
where the phase transition is known to be second order (Baxter 1973). The exact 
values of the transition coupling K, (Kim and Joseph 1974) and of the internal energy 
E, (Baxter et a1 1978) are known: K,  = ln(2 cos ~ / 9 )  = 0.6309 . . . , E, = 1.43908 . . . . 
In figure 3 ( a )  temperature (K) dependence of mF and E obtained by Monte Carlo 
simulations is shown. At low temperatures (large values of K ;  K >0.63),  mF’s for 
various system sizes show no size dependence. At high temperatures (K < 0.63) mF 
reveals clear size dependence, and the long-range ferromagnetic order vanishes in the 
thermodynamic limit. From this change in size dependence of mF one may conclude 
that the transition takes place at K = 0.630 f 0.002, which agrees quite well with the 
exact value K,= 0 .6309 . .  . . By fitting the magnetisation curve mF to the scaling 
form mfot (1 -K,/K)’ as is shown in figure 3(a ) ,  the magnetic critical exponent 

12 (L>O, K = O ) ,  13 ( M = - K  >O) ,  14 (M=-O.6 K>O), Is ( M = - 0 . 2  K > O ) ,  
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Figure 2. Phase diagx 3m in KM space. Monte Carlo simulations are done along the line 
II - l g ,  and the obtained transition points are marked by circles. The full line represents 
the second-order transition, and the broken lines the first-order transition. The multi- 
critical point is expected around K - -0.77. 

p = 0 . 1 0 ~ 0 . 0 1  is obtained. As for the energy E, the size dependence appears only 
near the transition point for smaller systems (N  = 15', 30'), and the thermodynamic 
limit seems to be attained for larger systems ( N  = 602, 120'). The critical value E, of 
the energy obtained by Monte Carlo simulation agrees quite well with the exact value. 
By fitting E of the larger systems to the scaling forms, E - E , a  (1 - K,/K)'-"' for 
K > K ,  and E, - E a ( K J K  - l)l-a for K < K,, one obtains the critical exponents 
a' = 0.31 Jt 0.01 and a = 0.35 f 0.03. The high-temperature susceptibility, ~ F T  = Nm;, 
shown in figure 3(b), is almost independent of the size for K < 0.62 or K,/K - 1 2 0.05. 
The fitting to the scaling form X F T a  (K , /K  - l)-' yields the value y = 1.3 k0.2. From 
figure 3 ( b )  one finds the saturation of X F  near the transition point. By assuming that 
xF's have already reached saturation values at K = 0.63 and further assuming a finite 
size scaling XFTaNY'd" for these saturation values, one obtains the exponent y/dv = 
0.82, or the exponent of the correlation length v=O.77 by using y =  1.27 and 
dimensionality d = 2. The resulting critical exponents are tabulated in table 1. They 
are consistent with those obtained by the previous Monte-Carlo simulations (Binder 
1981). Monte Carlo renormalisation group (Rebbi and Swendsen 1980), or 
phenomenological renormalisation group theory (Nightingale and Blote 1980) of the 
three-state Potts model on the square lattice, and agree well with the conjectured 
values (Enting 1975); a = a' = f ,  p = 6, y = T and v = 6. 13 5 
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Figure 3. The simulation result with a pure two-body interaction ([l):L =0, K > O  for 
various system sizes, N. V, N = 152; A,  N = 302; 0, N = 60'; 0, N = 1202. ( a )  The 
ferromagnetic order parameter mF and the reduced energy E. The critical point and the 
fits to the scaling behaviour are also given. ( b )  The ferromagnetic susceptibility at high 
temperatures. ( c )  The saturation values of the ferromagnetic susceptibility at K = 0.63 
are plotted as a function of the system size. The critical exponent v is obtained to be 0.77. 

Table 1. The Monte Carlo estimates of the second-order ferromagnetic transition tem- 
peratures and energies. Critical exponents are also estimated. The number in parentheses 
describes the uncertainty of the last digit. 

Transition E,  a ff' P Y V 

Il:L=O Kc=0.6309..  . 1.43094 0.35 (3) 0.31 (1) 0.10 (1) 1.3 (2) 0.8 (1) 

12:K = O  M,= 1.363 (2) 0.86 (2) 0.40 (5) 0.42 (3) 0.11 (2) 1.2 (1) - 

For the case with pure three-body interaction (along 1 2 )  the transition seems to be still 
continuous as is shown in figure 4(a). By fitting to the scaling form of the magnetisation 
and energy, we obtain the critical temperature M,  = 1.363 f 0.002 and the critical 
value of the energy E,= 0.86*0.02. Critical exponents are obtained as a = 
0.40*0.05, a'=0.42*0.03, p=0.11*Oo.02, y=1.2*O.l. The values of p and y 
agree well with the conjecture values and represent the universality of the critical 
phenomena. The deviation of a and a' from the conjecture values may be due to the 
crossover to the first-order transition. The series expansion (Enting and Wu 1982) 
also reveals rather a large value a'-0.65. 

Along the line l3  (M = -K > 0) it is rather difficult to decide whether the transition 
is continuous or not. For very small systems ( N  = 15', 302) fluctuations are too large 
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Figure 4. The energy E and the ferromagnetic (a-d) or the antiferromagnetic (e ,  f) order 
parameters along the lines ( a )  I 2  : K = 0, ( b )  I 3  : M = -K, ( c )  I5 : M = -0.2 K, ( d )  and ( e )  
1, : M = 0 and (f) l9 : L = 0. Dotted lines represent the first-order phase transition, and 
the data points whith arrows indicate the (semi-) metastable states, which finally relax in 
the arrowed direction to the true stable state. V, N = 152; A, N = 30'; 0, N = 602; U, 
N = 120'. 

to find the transition itself. For the system with size N = 60' we find no discontinuity 
in energy or magnetisation, whereas for the largest system, N = 1202, tiny discon- 
tinuities in energy and in magnetisation are found, as is shown in figure 4(b ) .  
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The difference in behaviour may be attributed to the finite size effect, since in the 
small system the size masks the large but finite correlation length at the first-order 
transition point. We therefore conclude that along l3  the system performs a weak 
first-order phase transition. 

Along the lines 14-17 one finds rather large discontinuities in the energy and 
magnetisation, indicating first-order transitions. At the transition point, the ferromag- 
netic state obtained by heating the ferromagnetic initial state coexists with the paramag- 
netic state obtained by cooling the paramagnetic initial configuration, as are shown 
in figure 4(c) for 1s and figure 4 ( d )  for 1,. For l7 (M = 0) a metastable paramagnetic 
state persists in low-temperature (large -K) regions, but for other cases, l4 - 16, the 
metastable state has relatively short lifetime and relaxes to the true equilibrium state 
as indicated by the arrows in figure 4. The first-order ferromagnetic transition points 
and the associated discontinuities in the energy and magnetisations are summarised 
in table 2. We expect a tricritical point near the line l3  and M - - K - 0 . 7 7 .  The 
precise determination of the tricritical point and the values of the tricritical exponents, 
however, is very difficult from our restricted number of data points. Probably one has 
to use a Monte Carlo renormalisation group method to determine the location of the 
tricritical point, as has been done by Landau and Swendson (1981) for the Blume-Cape1 
model. This is beyond the scope of the present paper. 

Table 2. The estimates of the first-order ferromagnetic transition temperature, and discon- 
tinuities in energy and the ferromagnetic order parameter. 

13:M=-K -0.773 0.07 0.62 

14: M = -0.6 K -0.1005 0.10 0.56 

15: M -0.2 K -1.470 0.26 0.67 

16: M=-0.1 K -1.685 0.39 0.80 

17: M=O -1.995 0.60 0.92 

4. Antiferromagnetic transition 

For M G 0 the antiferromagnetic structure, figure l (c) ,  is the ground state. We 
have performed Monte Carlo simulations with antiferromagnetic initial conditions, 
and found first-order antiferromagnetic transitions along the lines l7 - l g .  Figure 4(e) 

Table 3. The estimates of the first-order antiferromagnetic transition temperatures and 
the associated discontinuities in energy and the antiferromagnetic order parameter. 

1,: M=O -1.995 0.54 0.85 

1s: M = K  -1.705 0.27 0.78 

19: L=O -1.585 0.17 0.71 
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shows the change of the antiferromagnetic order parameter mm and the energy E 
along the line 1, (A4 = 0). By comparing figure 4(d) one finds F-AF coexistence regions 
at low temperatures K<-1.995. At the triple point K,= -1.995 the P, F and AF 
phases coexist. 

For the case with pure two-body antiferromagnetic interaction along the line 19, 

the antiferromagnetic order parameter m A F  and the energy E are shown in figure 
4(f). The transition temperature K,- -1.585 and the energy discontinuity AE = 0.17 
agree well with the values of the previous simulation by Grest (1981). The results of 
the antiferromagnetic transition temperatures and associated discontinuities in the 
energy and the antiferromagnetic order parameter are tabulated in table 3. 

5. Summary 

In conclusion, the Monte Carlo results are summarised in a phase diagram shown in 
figure 2. The ferromagnetic phase transisition in the positive M region changes from 
continuous to first order on varying the coupling constants. The antiferromagnetic 
phase transition in the negative M region and the transition along the ferro- and 
antiferromagnetic coexistence line at M = 0 are first order. The obtained phase 
diagram agrees quantitatively with that obtained by the low-temperature expansion 
by Enting and Wu, except the position of the tricritical point which has large uncertainty 
anyhow. In order to determine the tricritical point, the real space renormalisation 
group method including the possibility of vacancy (for example Nienhuis et a1 1979) 
may be applicable. 
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